1/2x^2=80

Simple and best practice solution for 1/2x^2=80 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2x^2=80 equation:



1/2x^2=80
We move all terms to the left:
1/2x^2-(80)=0
Domain of the equation: 2x^2!=0
x^2!=0/2
x^2!=√0
x!=0
x∈R
We multiply all the terms by the denominator
-80*2x^2+1=0
Wy multiply elements
-160x^2+1=0
a = -160; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-160)·1
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*-160}=\frac{0-8\sqrt{10}}{-320} =-\frac{8\sqrt{10}}{-320} =-\frac{\sqrt{10}}{-40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*-160}=\frac{0+8\sqrt{10}}{-320} =\frac{8\sqrt{10}}{-320} =\frac{\sqrt{10}}{-40} $

See similar equations:

| 2x-7/2+x-7/4=x+5/5 | | 39-26x+3.25x^2=0 | | 8-3p=2(4-5p)-21 | | 10x+4+6x=180 | | 1/4(x+12)=x+10 | | 300=9x+150 | | 4n-2(n+6)=2(2n-5) | | a×3=-30 | | 1/7(3(x-1)+27)=x | | 6=-7f | | (2x-7)(6-x)=0 | | X*10=3x+18 | | 3k-7=7k+2 | | 3+w=6 | | -0.5x+3.25=-0.1+7.25 | | 40+15+.25=45+45+.35x | | -0.25x+3.25=-0.1x+7.25 | | 198=15+5x/11 | | 3x-6+2x-8+x+10=180 | | -9u-2=5(u-6) | | 191=15+5x/11 | | 17-(3x-8)=2x(x-5) | | x12)+32=180 | | 5z+15+3z=-11-30z-9 | | d/60+1=d/60 | | 30+3x=2 | | 5x-2=7x-3x | | m+16=987 | | x+2/5=1/6 | | 2x-5=x+7= | | 5x=5-9x | | 6w-15-8w=11-35w+9 |

Equations solver categories